

Technology focus: Natural Gas & Biomethane

Webinar Series 6 8th September 2022, 11.00-12.00 CEST

Jean-Marc Boucheret

Public Transport Sustainable Mobility Manager at IVECO

Jean-Marc Boucheret Public Transport Sustainable Mobility Manager, IVECO

- Graduate Engineer Art & Métiers
- 20 years Public Transport
- Product Manager Bus Euro V / VI / Electromobility
- New powertrains & energies
- UITP : Member VEI Com., Trainer ebus
- TEDx speaker

Programme

Technology focus: Battery buses				
11.00 – 11.05	Welcome & Introduction	Aida Abdulah, UITP		
11.05 – 11.40	 Introduction to natural gas technology Different fuels: CNG, LNG, LPG Units & conversions Natural Gas & Biomethane CO2 emissions : TTW / LCA Vehicle and components Refueling infrastructure Safety aspects 	Jean-Marc Boucheret, IVECO		
11.40 - 12.00	Questions & Answers			

Today's goal

- Clear and complete overview of natural gas technology and its fuels
- Brief look into natural gas and biomethane
- What are the main features and main challenges of this technology?
- Which aspects should I consider upfront when considering this technology?
- Insights on safety aspects
- Which sources of information can I refer to, to further learn on a specific technology?

Etiquette for joint discussion

- Participants please mute yourself per default
- You can use the Chat to place your questions, share interesting info or make us aware of any technical issue
- Raise your hand and switch on your camera to ask to have the word
- The session will be recorded.

We count on your valuable contribution for a successful workshop. Thank You!

How to achieve Energetic Transition and Sustainable Mobility

• Concepts :

- From Fossile to Renewable energy
- Combine Vehicle + Energy + Renewable
- Zero-Emission Local / Global
- Green House Gases emission compensation

Clean Vehicle Directive – 1161/2019

- Applicable to M3 Class I = Buses Low Floor & Low Entry, and M3 Class A
- Procurement Targets for countries:

Dates / Min.Targets of Clean Vehicles	from 2022 till 2025	from 2026 till 2030
Fr, It, Es, Ge, Au, Dk, Be, NL, Lu, Li, Sw, Fi, CZ, UK, Ma, Cy	41 to 45%	60 to 65%
Other E.U. Countries	24 to 37%	33 to 53%

Clean Vehicle <u>definition</u> is following the Directive of Alternative Fuel Infrastructure 2014/94 :

Minimum

50% Zero-Emission :

- Electric
- Trolleybuses
- H2 Fuel Cell
- H2 ICE

50% Low-Emission :

- Gas (Natural Gas / Biomethane)
- Alternative fuels :

 \bullet

- Biofuels (B100), synthetic & paraffinic Fuels \rightarrow HVO, GTL
- but shall not be blended with fossil diesel (= no B30)

Rest :

- Diesel B7, incl. Hybrid
- Other non eligible

Evolution of bus technology in EU

B

ACEA

Example Portfolio compliant CVD

Vocabulary

METHANE (CH4)

- CNG : Compressed Natural Gas → dominant bus, garbage collection, urban delivery
 - Transport at medium pressure pipes
 - Vehicle storage gaseous at 200 bars

- LNG : Liquified Natural Gas → dominant Long Haul
 - transport & storage in liquid cryogenic -163°C

- LPG : Liquified Petroleum Gas → dominant passenger cars (no more trucks & bus EU)
 - propane (C3H8) + butane (C4H10
 - Transport & storage at low pressure

Units & Conversion

1 Nm3 or Standard Cubic Meter (SCM) :

- unit corresponding to volume of 1 m3 at 0°C and 1,01325 bar
- > 1 Nm3 = 0,948 Nm3 at 15°C

1 m3 CNG

0,75 to 0,83 kg CNG = 0,79 kg average

Lower Heating Value : depends on the gas composition

- > 46 MJ / kg
- 12,8 kWh / kg (1MWh = 3,6 MJ)
- ➤ 1 MWh = 78 kg

Volume in tank at 200 bars

160 l tank = 32 kg CNG

Density : 0,6

Source : Circulaire Douanes GNC 2019, JEC CONCAWE 2018, INERIS 2011

Citygas

Transformation coal → gas Distillation ca. 1810

Source : Wikipedia, BnF

Citygas

Distillation Coal	volume	weight
H_2	50 %	8 %
CH_4	32 %	42 %
CO	8 %	19 %

Source : Wikipedia, BnF Paris / Saint-Denis (football stadium) ca. 1920

Citygas

- Paris citybus in WWII
- Fueled with citygas, low pressure in rubber membrane
- Operation « opportunity charge » : refueling at both terminus

Natural Gas transport assets

Natural Gas transport assets

Natural gas pipelines and LNG terminals in Europe

Sources: BDEW, Eurogas

Future Gases transport assets

Injecting biomethane

H2 pipes

RePower EU : REPowerEU: affordable, secure and sustainable energy for Europe 18/05/2022

What it takes to produce 35 bcm biomethane by 2030

Enough biomethane production in EU to meet REPowerEU 2030 target

Jonathan Spencer Jones 26 July 2022

Share this article 🖕 🎔 🦸 in 🕒 🖾 🔗

(Image: 123RF.com)

Gas | Biomass | Decarbonisation | Europe & UK | Finance & Investment | Policy & Regulation

A new study from the Gas for Climate consortium estimates that in the EU-27 up to 41 billion m3 (bcm) of biomethane could be available by 2030, exceeding REPowerEU's 35bcm target.

The study, which updates earlier estimates with the EU's ambition to accelerate biomethane production and take advantage of advancements in technology, further finds that up to 151bcm could be available by 2050 – close to the current 155bcm natural gas imports from Russia.

Energy price – impact on TCO - 2022

Fossile vs. Biomethane

1€ per kilo: OrangeGas freezes bio-CNG price

Germany

Greenhouse Gas Emission Compensation Mechanism

Electricity

- Hydraulic
- Wind
- Solar

Bio-methane

- Treatment of household wastes
- Agricultural: Intermediate Culture with Energetic Purpose
- Food industry: valorization of by-products

Path to circular economy

Métropoles investing in methanisation plants

In Nantes, 1 bus out of 2 could run on green gas

03/03/2022

By 2024, public stake holders have to propose recycling solutions for food wastes. Nantes Metropole intends to speed up investments in methanisation plants.

The waste water treatment plant of Aquapole is injecting biomethane in the GRDF gas grid. Operational since 2016, it produces 225 Nm3/h biomethane, equivalent to 80 buses. 1/3 of Grenoble buses run on bio-CNG.

Grenoble

Thanks to 14 000 t of wastes treated annually, the methanisaytion site will produce 8 000 t of compost and10 GWh of biomethane. 21 M€ : 14 M€ for new building + 7 M€ for upgrade & connect Investment amortization 12 years

How to assess CO2 emissions of transport vehicles ?

Which contributions of renewable fuels in EU texts ?

Well-to-Wheel

BioCNG emission Tank-to-Wheel

Which contributions of renewable fuels in EU texts ?

Tail-pipe : Current CO2 Directives : No contribution

LCA

Clean Vehicle Directive 1161/2019

Recital 31.

By 31 December 2027 [...] the Commission should also assess, inter alia, the possibility of aligning this Directive to any methodology for counting life-cycle CO2 emissions and well-to-wheel CO2 emissions developed in the context of EU vehicle CO2 emission performance standards.

Revision Regulation (UE) 2019/631, Passenger cars & LCV CO2

Council agreement, 30,06,2022

Recital 9a.

Following consultation with stakeholders, the Commission will make a proposal for registering after 2035 vehicles running exclusively on CO2 neutral fuels in conformity with EU law, outside the scope of the fleet standards, and in conformity with the Union's climate neutrality objective.

Regulation (EU) 2019/1242 - CO2 Standards Heavy-Duty vehicles

Recital 42,

It is important to assess the full life-cycle CO2 emissions from heavy-duty vehicles at Union level. To that end, the Commission should evaluate not later than 2023 the possibility of developing a common Union methodology for the assessment and the consistent data reporting of the full life-cycle CO2 emissions of heavy-duty vehicles that are placed on the Union market.

Life Cycle Analysis

Citybus

October 2020

Life Cycle Analysis

Citybus

October 2020

Emissions (1/2)

January 2021

Emissions (2/2)

January 2021

Safety – technical training – human organisation

- Identification of risks
- Building installation
- Leak detection
- Organisation
- Training

Qualification level	Intervention scope	Training received
1	Low pressure cuicuit	CNG training + OEM
2	High / Low pressure circuit, except electrovalve tank	Specific OEM training
3	all	Expented OEM training & other trainings

Véhicules industriels équipés au gaz naturel Mesures de prévention contre le risque explosion

Lille – Sequedin bus depot

Créteil - RATP

Stockholm

Filling-up vehicles

Refueling station

Fast: 10 mn

Accelerated : 30-60 mn

Slow:7 h

Tanks

At 200 bars, gas stored in the vehicle occupies 4x more volume

12 m CNG bus 4 tanks on the roof

High pressure CNG circuit

Components

1. Filling nozzle

2. Pression Gauge

- 3. Expansion module \rightarrow engine
- 4. Thermal fuses (neck of tank)
- 5. Thermal fuses (middle of tank)

6.Cap

- 7. Multifunctional electro-valve
- 8.1/4 turn valve engine
- 9.¼ turn valve filling
- 10.1/4 turn valve additional heater
- **11.**Temperature gauge rack

Tanks

Detailed Inspection Control : all high pressure, incl tanks Visuel check s, gas leak instrument. Every 4 years.

Multifunction valve

Electrovalve

to Vehicle

HP piping

« Pressure Relief Device » : PRD

Over-pressure relief valve 280 bars

Tank

Thermal fuse 110°c

Manual valve

Non-return valve + flow limiter

Pressure sensor For detection P > 250 bars

Fire detection system – water fog spray

Fuse

Control

3 zones for extinguishing: 2 Engine compartment

Additional heater

Devices in gas vehicles – R110 and additional

NATURAL POWER

.....

÷.

Questions & Answers

Thank You!

The recording will be available soon at <u>www.cleanbusplatform.eu</u>

High pressure CNG circuit

Components

Filling nozzle
 Pression Gauge
 Expansion module → engine
 Thermal fuses (neck of tank)
 Thermal fuses (middle of tank)
 Cap
 Multifunctional electro-valve
 ¼ turn valve engine
 ¼ turn valve filling
 10.¼ turn valve additional heater
 Temperature gauge rack

