

CLEAN BURDE PLATFORM

Depot adaptations & safety issues for zero-emission buses

Webinar Series *26th January 2023, 11.00-12.00 CET*

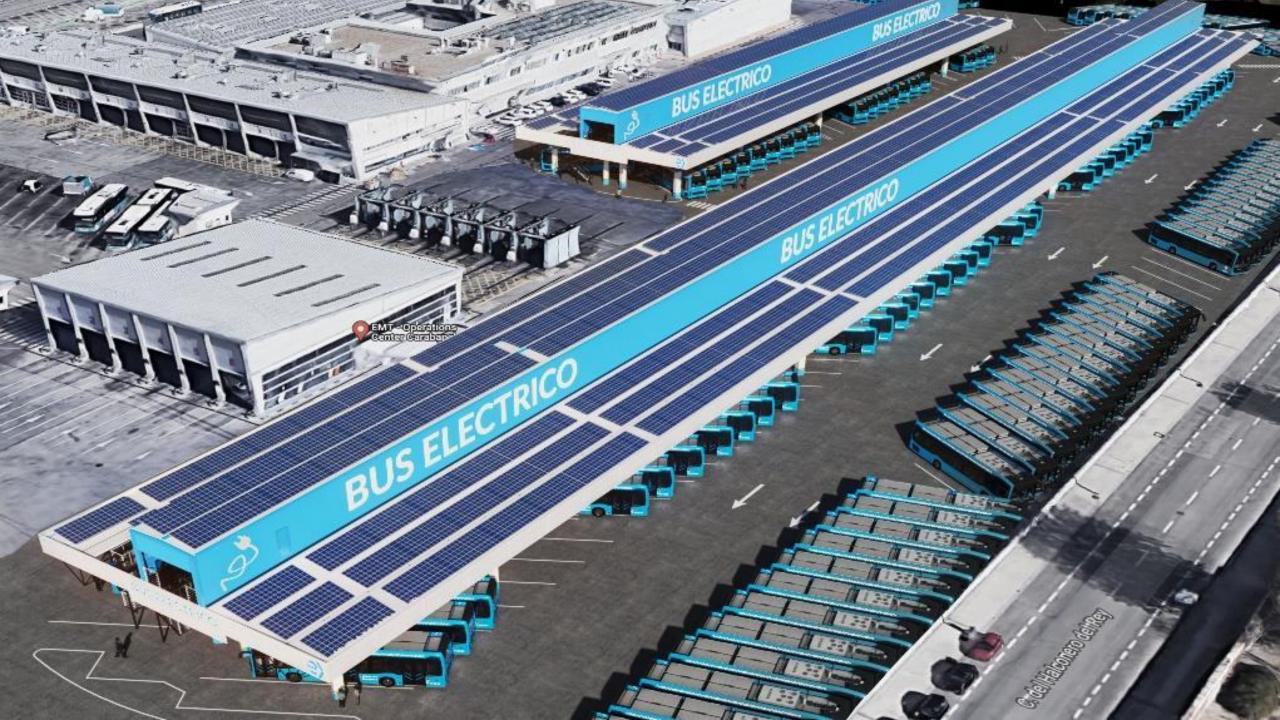
Lidia León Talavera
Deputy Director of Operations Centers, EMT Madrid

Lidia León Talavera Deputy Director of Operations Centers, EMT Madrid

- Industrial Mechanical Engineer
- At EMT Madrid since 2006, in several positions always linked to bus operation
- Since 2019, representative of EMT Madrid at UITP Bus Committee and leader of the CVT work stream
- Since 2020 Deputy Director of Operations Centres at EMT Madrid.

Programme

Depot adaptations & safety issues for zero-emission buses						
11.00 – 11.05	Welcome & Introduction	UITP				
11.05 – 11.50	 EMT MADRID: History, Data and Assets II. INTRODUCTION TO BUS DEPOT ELEMENTS III. PLANNING Operation structure Charging Infrastructure Smart Charging Safety regulations and standards IV. TOTAL COST OPERATION V.EMT CONCLUSIONS 	Lidia León Talavera, EMT Madrid				
11.50 – 12.00	Questions & Answers					



Etiquette for joint discussion

- Participants please mute yourself per default
- You can use the Chat to place your questions, share interesting info or make us aware of any technical issue
- Raise your hand and switch on your camera to ask to have the word
- The session will be recorded.

We count on your valuable contribution for a successful workshop. Thank You!

Depot adaptations & safety issues for zero-emission buses Lidia León Talavera, Deputy Director Operations Centres, EMT Madrid

Agenda

- I. EMT MADRID: History, Data and Assets
- II. INTRODUCTION TO BUS DEPOT ELEMENTS

III. PLANNING

- Operation structure
- Charging Infrastructure
- Smart Charging
- Safety regulations and standards

IV. TOTAL COST OPERATION V.EMT CONCLUSIONS



I. EMT MADRID

History, Data and Assets

EMT Madrid: History, data and assets

MUNICIPAL TRANPORT COMPANY OF MADRID

Created in 1947.

Company 100% owned by Madrid City Council.

Service 24/7 all year round.

Operates and manages the whole network of public urban buses in Madrid city.

EMT also provides other public mobility services in the city of Madrid:

- Since 2014, managing parking facilities and tow trucks
- Since September 2016, the public e-bike sharing system BiciMAD.
- Since January 2018, the cable car system

But also managing the segregated bus lanes, bus canopies/shelters advertising exploitation, and Consultancy

EMT MADRID: ASSETS

EMT is the reference of surface mobility in the city of Madrid. It counts with 9.923 workers, 7 business lines and 5 Bus Depots that enable the company to provide integrated and client-oriented services that foster a sustainable and efficient mobility.

2.090 buses (2.090 buses in Dec.-2022 | 100% green fleet)

220 bus lines

372,9M passengers (Dec.-2022))

10.884 bus stops | **3.977,66** km network | **5** bus depots

(Nov.- 2022) BiciMAD 3.681 bikes | 373 BiciMAD Go |

264 bike stations | 15 districts

3,3M rides (2019)

(Dec-2022) PARKING

28 parking facilities | 1 Mobility hub |

12.530 parking lots

80 cranes | 4 bases | 3 depots 39.015 removed vehicles (Dec. -

CABLE CAR

80 cabins | 2 stations

310.521 passengers (Dec. – 2022)

ADVERTISING

+4.000 bus shelters

CONSULTING

8 technical assistances6 EU funded projects

Strategic Framework 2021-2025

Strategic Framework for EMT

International roadmap transferred to the local level

European Green Deal

Next Generation Funds

MADRID 360 Sustainability Strategy

Sustainability Strategy Madrid 360 reflects Madrid's commitment to:

- the SDGs and the decarbonisation objectives of the European Green Deal, and
- the reduction of carbon dioxide emissions in the city by 6.5% is marked as a key objective.

MADRID 360 new SUMP

July 2022. Completes and develops the strategy measures

EMT Madrid Strategic Plan 2021-2025

EMT Strategic Plan 2021-2025 aims to reinforce the Company as:

- the reference of sustainable mobility in the city,
- 100% free of diesel and with clear progress in the decarbonisation of the fleet.

Strategic Framework for EMT Madrid

Strategic Plan EMT 2021-2025

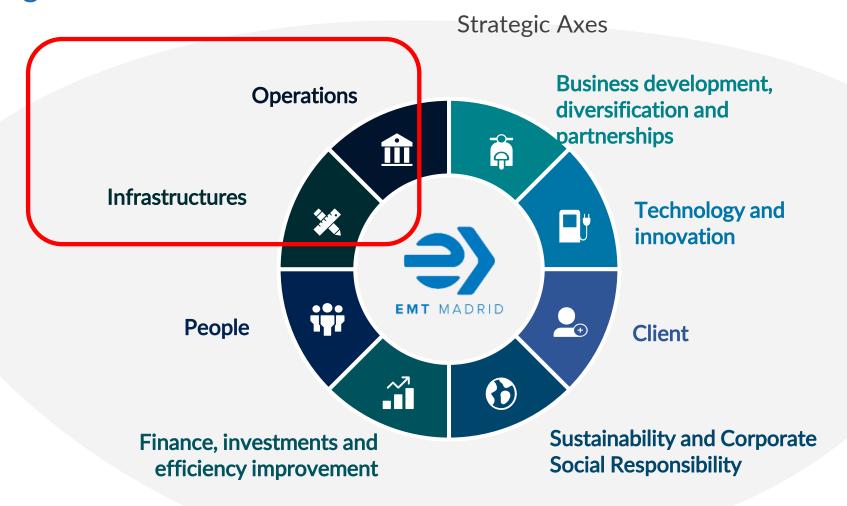
Corporate Goals

The corporate objectives characterize the general purpose in transversal objectives for the entire company, focused on sustainability, the client, economic profitability and digital transformation.

Move towards a green, decarbonised company that takes advantage of the benefits of the circular economy

Strengthen customer orientation with an excellent service of general interest

Guarantee financial sustainability and business growth through new businesses and services



Promote the digital transformation of EMT and the improvement of efficiency in the provision of mobility services

Strategic Framework for EMT Madrid

Strategic Framework for EMT Madrid

Main Strategic Projects

Operations

2030 Bus Development

Design of the new **bus model**, **with technological improvements** deployed on board to improve the quality, efficiency and safety of the service.

On-demand bus pilots and autonomous driving

Prospecting and development of pilots to **promote innovation and international positioning** of the company, offering new services to users.

Infrastructures

Bus Depots of the future: La Elipa and Las Tablas

Design and construction of the Bus Depots of the future to **optimize the operation of current services** and enable the provision of new services.

Parking lots as mobility infrastructures

Transformation of infrastructures to support the **sustainable mobility of the future**, promoting EMT Madrid's role as a mobility agent.

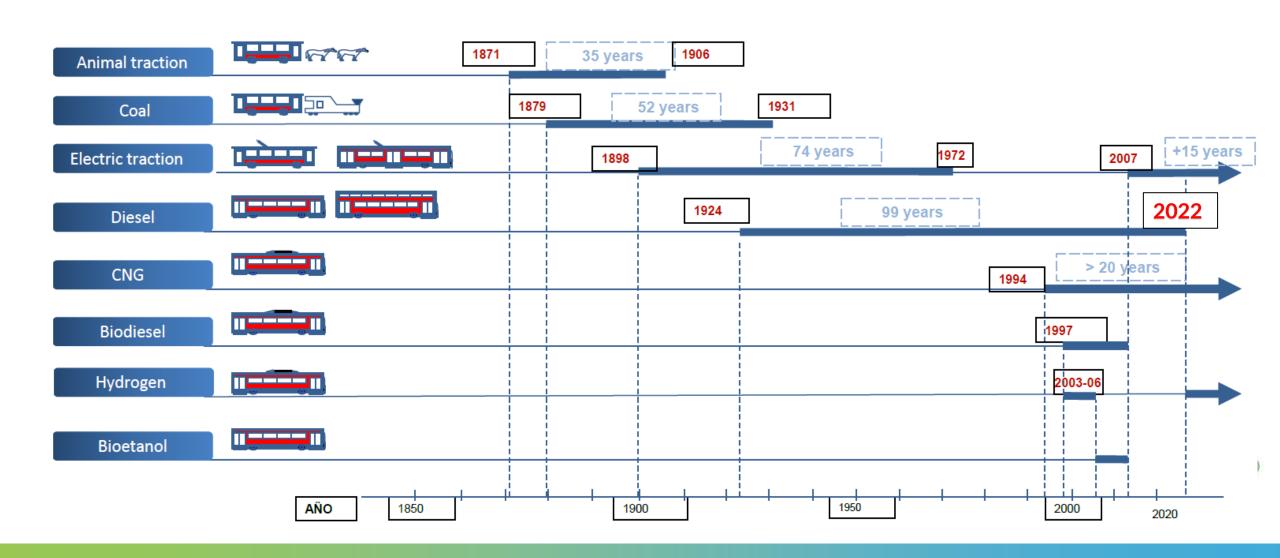
Photovoltaic panels installation

Installation of more than 40,000 m² of photovoltaic panels to improve infrastructure sustainability and facilitate the transition to a decarbonized and efficient EMT.

Strategic Framework for EMT

Strategic Plan EMT 2025

Investment planned: € 1.000M for the next 5 years



€	2021	2022	2023	2024	2025	TOTAL
Buses acquisition	112.132.900	108.584.200	81.403.900	116.284.200	116.284.200	534.689.400
Constructions	200.000	17.692.900	45.155.800	52.655.800	16.050.000	131.754.500
Installations	4.124.744	29.523.188	50.675.800	55.255.800	18.650.000	158.229.532
Other investments	25.362.310	59.719.861	45.038.420	23.000.495	24.064.208	177.185.292
TOTAL INVESTMENT	141.819.954	215.520.148	222.273.920	247.196.295	175.048.408	1.001.858.724

EMT MADRID: PREVIOUS FLEET EVOLUTION

EMT MADRID: TRANSITION DIESEL – CNG / CNG – BATTERY ELECTRIC

FROM DIESEL TO CNG

- 1. EMT has already done a full transition from DIESEL to CNG (1994-2022)
 - a) Over more than 20 years, EMT has been purchasing CNG buses.
 - b) Since 2010 EMT has not purchased any diesel buses

- 2. IMPLEMENTATION PROCEDURE
 - a) Transitory adaptations of depots as testing ground
 - b) New depot 100% GNC in 2010 based on previous experience in other depots

FROM CNG TO ELECTRIC

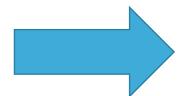
- 1. EMT started with its first fully electric e-bus in 2007 (microbuses).
- 2. First 12 m long fully electric e-bus in 2018 (first public trials in 2017)
- 3. Expected transition to a **fully decarbonized fleet up to 2035** (Today at 8%; by 2027 will be at 34%)

EMT MADRID: ELECTRIFICATION OF BUS FLEET

Fleet evolution

Current e-fleet

- ✓ Total e-buses in service: 180
- ✓ 19 bus lines 100% electric


Strategic decision: no diesel fleet renewal (2010) C.O. de Sanchinarro, 2010: First 100% CNG bus depot in Europe

	2020	2021	2022	2023	2024	2025	2026	2027
Diesel	388	196						
GNC	1.552	1.678	1.829	1.744	1.661	1.561	1.451	1.351
Hybrid	47	47	17	17				
Hydrogen				10	10	10	20	20
Electric	81	179	254	329	429	529	629	729
Total	2.068	2.100	2.100	2.100	2.100	2.100	2.100	2.100
% electrifiation fleet	3,9%	8,5%	12,1%	15,7%	20,4%	25,2%	30,0%	34,7%

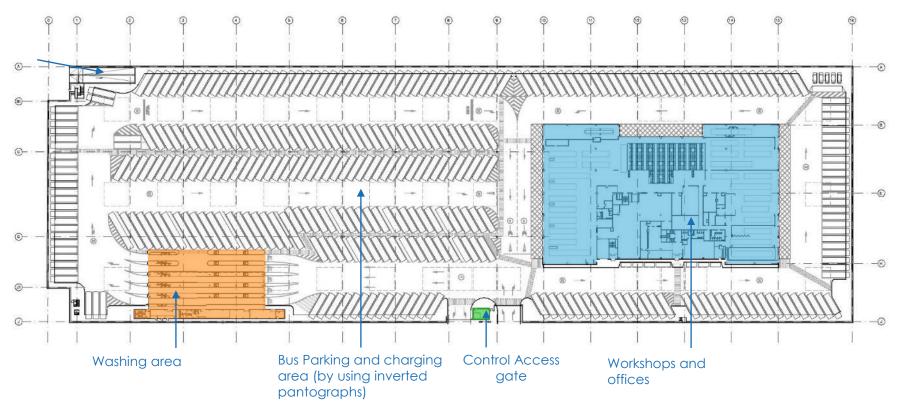
Composition fleet evolution in EMT at the end of the year (unities). Source: EMT Madrid.

Currently, 100% Green fleet

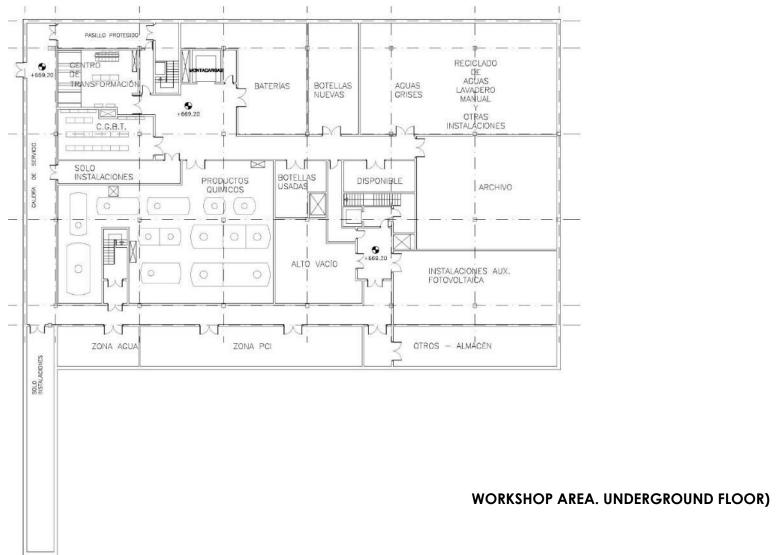
Short-medium term 2020-2023

Long term 2024-2028

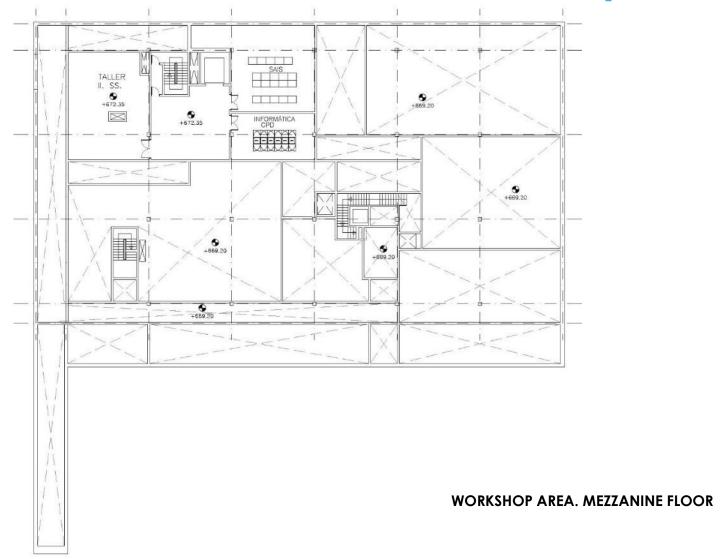
50 e-buses /year In 2022 and 2023 : 75


100 e-buses /year

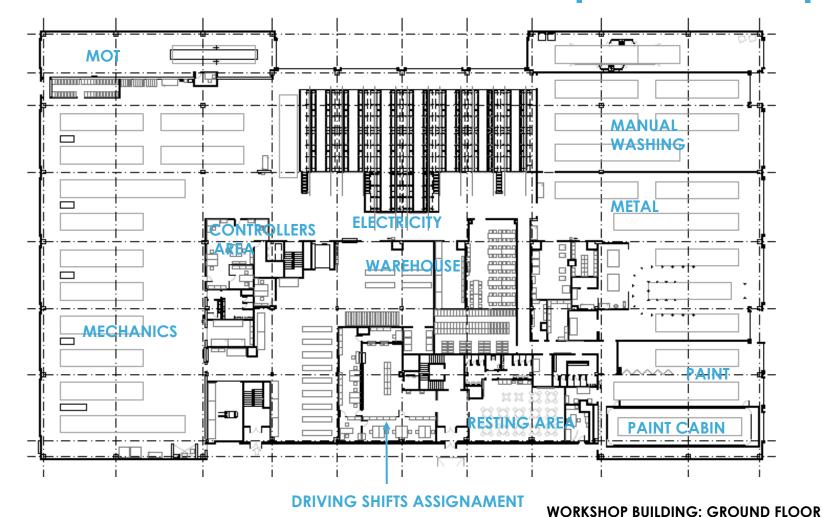
II. INTRODUCTION TO BUS DEPOT ELEMENTS

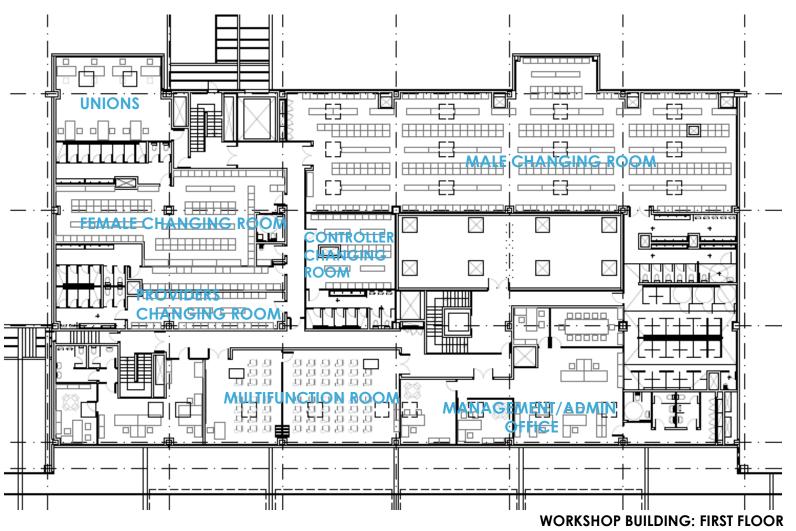


Parking Access (for employees and visitors)



CENTRO DE OPERACIONES DE LA ELIPA (EMT MADRID) Ground floor





III. PLANNING

III.I. OPERATION STRUCTURE

E-BUSES OPERATION STRUCTURE

Supply Contract

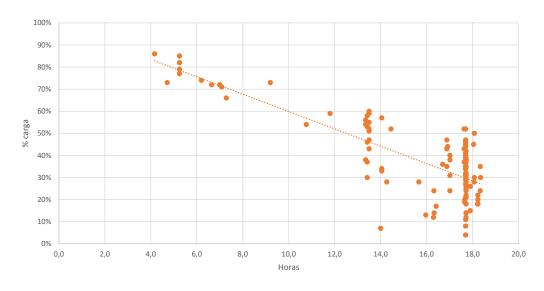
Fleet Provider

- Bus Provider
- Chargers Provider
- Training
- Maintenance during warranty period

Energy Provider

What does EMT do?

- Bus Operator
- Maintenance fleet
- Training workforce
- Installation and Maintenance of charging infrastructure


Aspects to consider for e-bus operation

About the service provided

- Charging processes
- Autonomy conditioned by:
 - Weather
 - Use of air-conditioning systems (very relevant in consumption)
 - Decreasing based on use

Substantial difference between range estimates and operational values.

- Influence of driving. Driver training is essential and needs to be regular.
- Systems to monitor driving patterns in range-limited vehicles are essential as a means of detecting training needs.
- Influence of routes. Effectiveness of energy recovery system

In-service unloading process

III. PLANNING

• III.II. CHARGING INFRASTRUCTURE

CHARGING INFRASTRUCTURE

Available

charging

time

Power input

Inputs:

Operational analysis

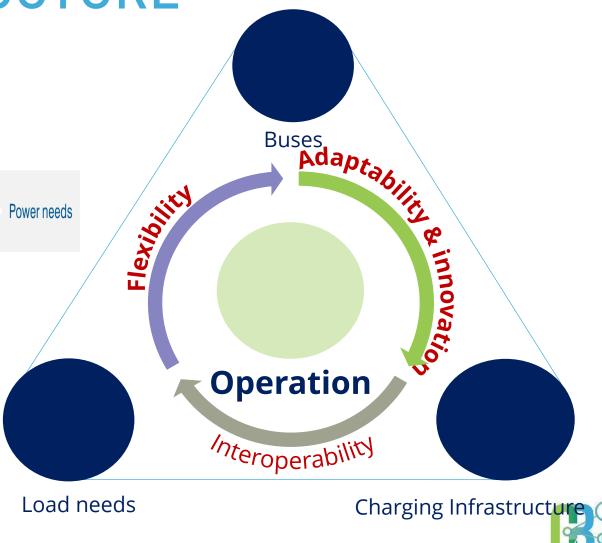
Bus Energy consumption

Desired final SOC

Charging strategy & timing

Characteristics of new buses

Initial SOC


charged

Outputs:

(ilometres travelled

- Election of charging solution
- Definition and optimization of charging strategies
- Depot adaptations

consumption

CHARGING SYSTEMS EVOLUTION IN EMT MADRID

INDUCTION
OPPORTUNITY
CHARGING

5 Vehicles

Since 2018

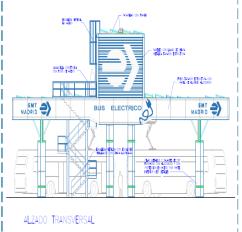
Opportunity charging on final lane

PLUG IN CHARGING

138 Chargers

Since 2007 minibuses (25)

Since 2018 standard (113)


INVERTED PANTOGRAPH

176 pantographs

4 in test project

52 in 2022

118 in 2023

SMART CHARGING & NEW DEPOT

New Depot

318 inverted pantographs

Smart Charging

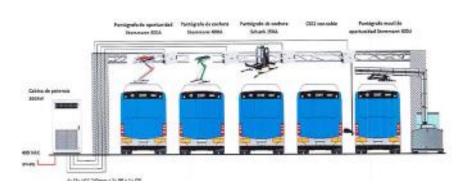
Optimizing charging power and cost

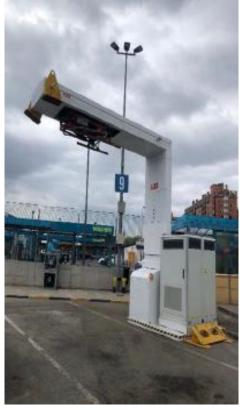
OPPORTUNITY CHARGING: INDUCTION PILOT

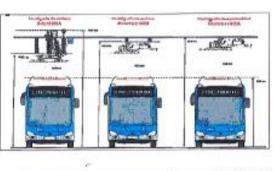
- Since 2018
- Retrofit of 5 hybrid buses from CNG to electric
- Certain limitation of energy storage on board
- Opportunity charge on the two ends of the lane (100 kW) and by wire charging in depot
- Not be further developed because the technology is not providing adequate performance for EMT operations

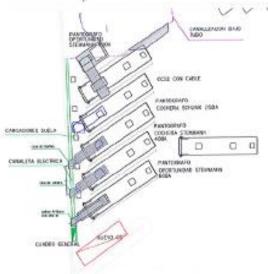

PLUG-IN CHARGING

- Since 2007
- 138 chargers
- 25 with 80 kW of power for minibuses
- 113 between 80 and 120 kW of power for standard buses









Inverted pantograph chargign (Test Project)

About charging infrastructure facilities

Installed power requirements

- Variations in contracted power require long management times.
- Electrification needs to be analysed globally. The necessary transformation centres require space and locations that allow for complex growth.

Location of chargers. Increased space requirements

- Conventional fleet parking spaces (herringbone in our case) clash with the provision of 1 charger/bus.
- The space requirements of the charging systems themselves and the guarantee of their physical security reduce the available parking spaces.
- The presence of large-diameter wiring and charging connectors makes it necessary to think about load-bearing elements and, in any case, the appearance of risks.
- Solutions such as pantographs imply the elimination of some but not all of these factors.

i.e. The new Fuencarral bus depot transformation centre will supply 50 chargers of 80KW

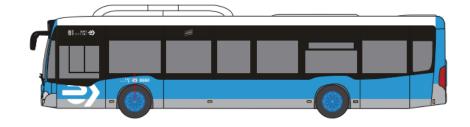
About workshops facilities

Requirements for working at heights:

- Batteries are largely located on the roof. This implies an additional need for workshop height.
- At present, this is less of a constraint, given that the CNG and air-conditioning works previously made it necessary to take initiatives to solve the problem.

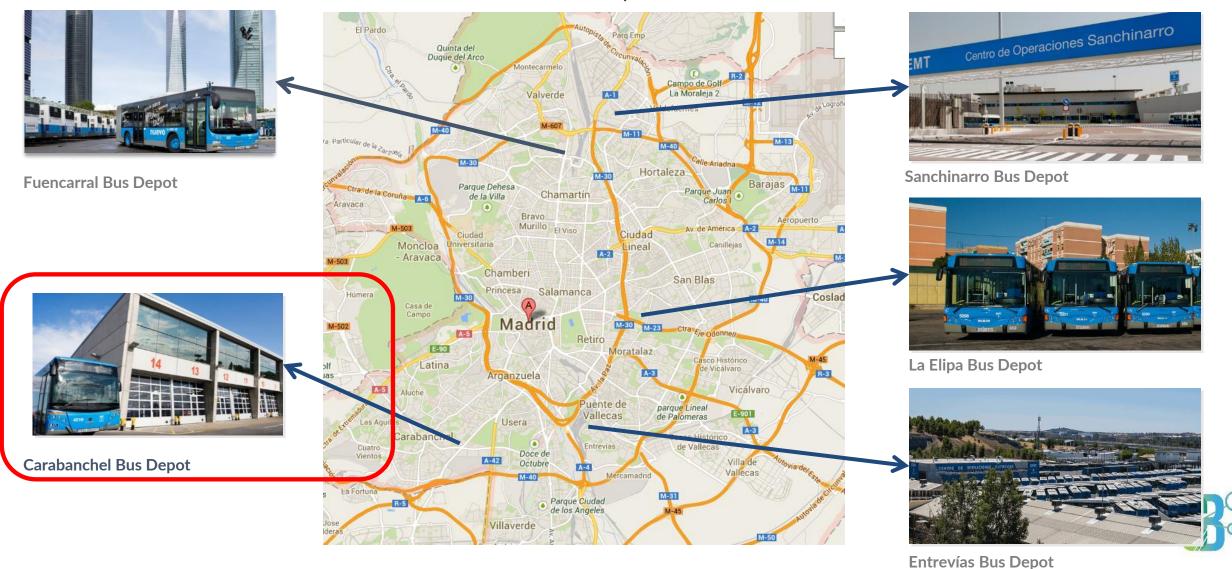
Requirements for **battery movement and storage**:

- Batteries, for the time being, have a limited life. Warranties shorter than the usual amortisation periods imply replacement works of high and heavy elements.
- Positions adapted to these jobs are required.
- Batteries are expensive elements with delivery times that generate immobilizations that are difficult to assume.
- Reducing these lead times involves stocking equipment that requires unusual storage conditions.
- The vehicle's allocation for medium/high voltage work implies the use of larger workshop spaces or specific work areas.



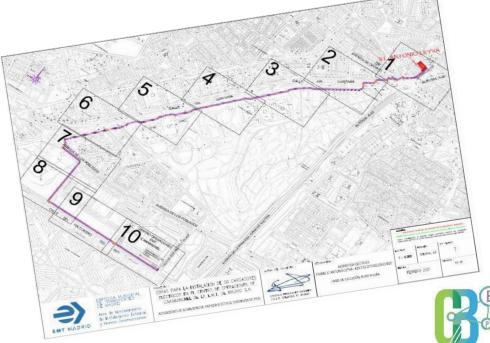
About maintenance equipment at workshops

For **preventive** reasons, the use of insulated tools specially designed for working under voltage is mandatory. These are expensive tools which deteriorate easily.


- Not many jobs require their use.
- It is advisable to rationalise their use through training
- It is necessary to acquire what is needed after study
- As in so many areas of life, it starts with exaggeration (the manufacturers themselves contribute to this excess in their maintenance manuals) and that is why the decision on what to equip oneself with and to what extent must be considered.

Depots adaptations

EMT Bus Depots

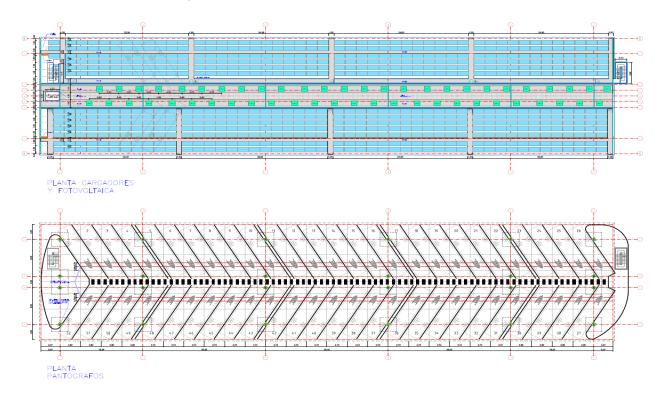


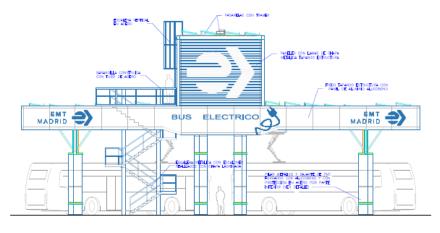
CURRENT DEPOTS ADAPTATIONS: CARABANCHEL

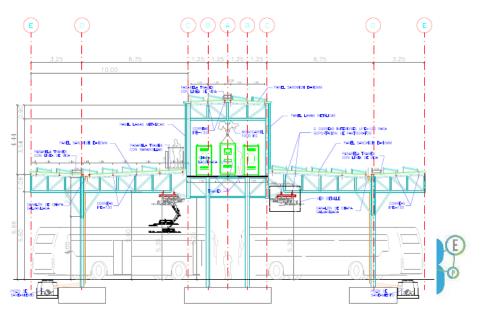
Proyect along four years 2021/2023 for 220 chargers:

- Obtaining the necessary energy supply: 15MW
- Purchase of recharging elements:
 Chargers and Pantographs
- Execution of civil works and design and construction of the necessary electrical infrastructure

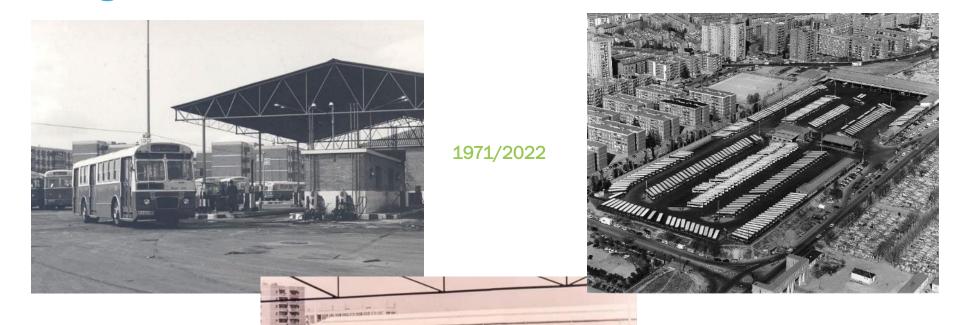
CURRENT DEPOTS ADAPTATIONS: CARABANCHEL



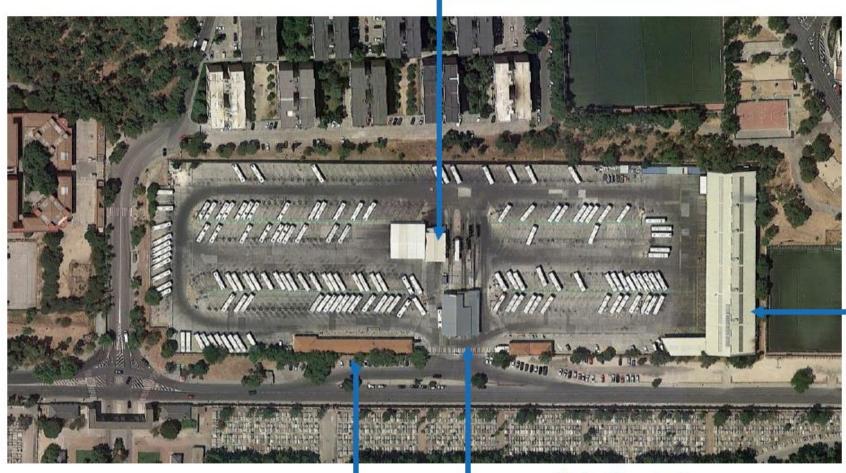



INVERTED PANTOGRAPH CHARGING

- In construction since June 2022
- 52 chargers of 100 kW in 2022
- 118 chargers up to 300 kW in 2023
- Infrastructures had been designed for chargers from 275 kW up to 865 kW
- Photovoltaic panels on the roof

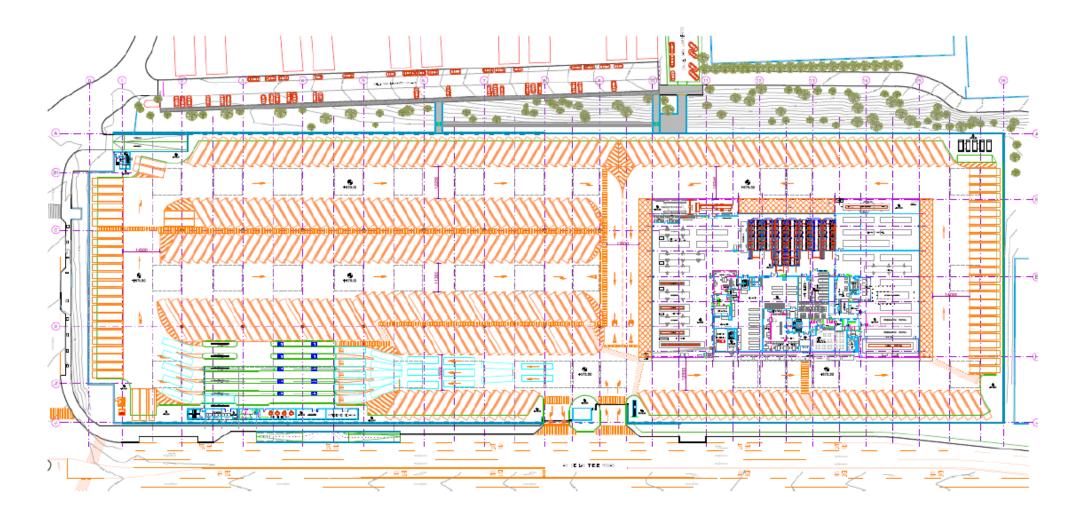


ALZADO TRANSVERSAL


NEW ELECTRIC LA ELIPA BUS DEPOT: its origins

NEW ELECTRIC LA ELIPA DEPOT: ACTUAL STATE

Washing area

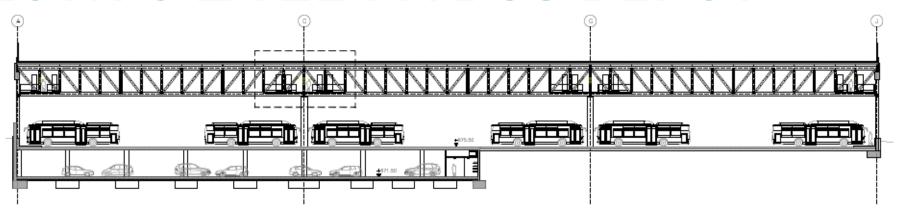

Operation Building

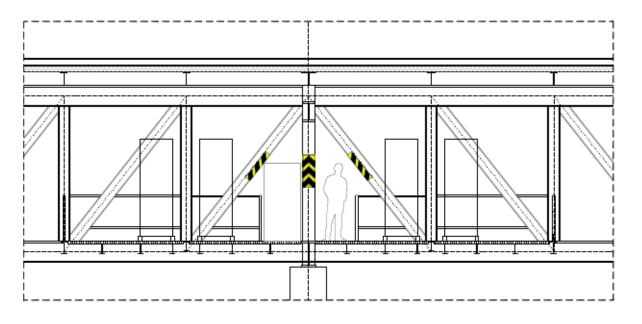
Refueling station (3 lanes diesel and CNG) Workshops

NEW ELECTRIC LA ELIPA DEPOT: FORECAST STATE

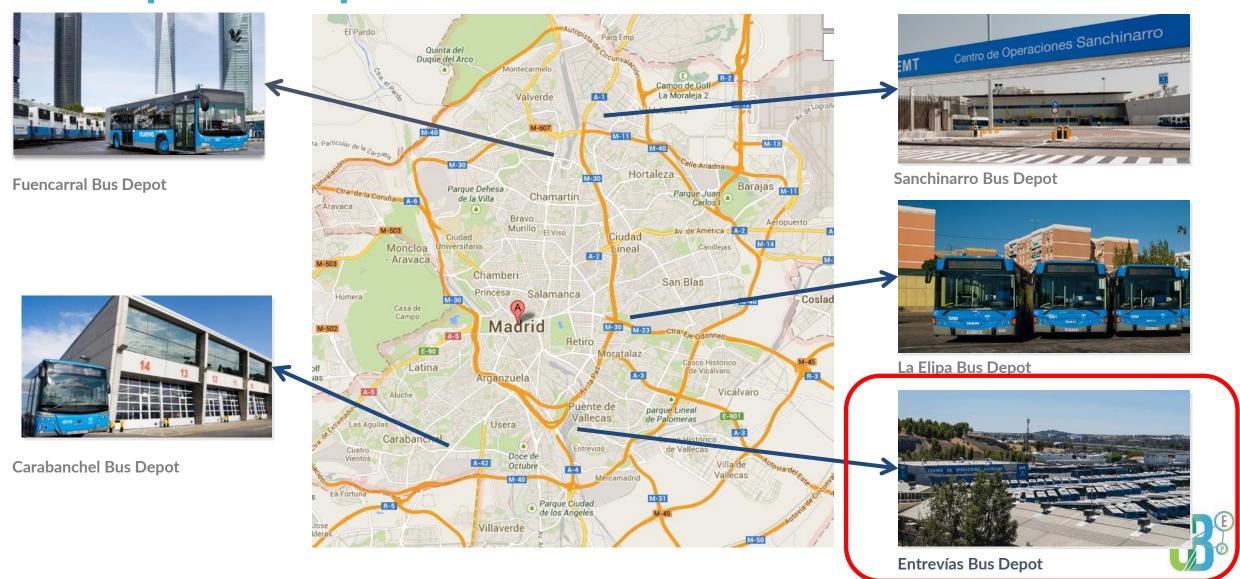
Overnight charging by 318 inverted pantographs – 100% electric La Elipa Depot

NEW ELECTRIC LA ELIPA BUS DEPOT




- ✓318 ebuses
- ✓ Inverted pantograph charging
- ✓ Designed with sustainable environmental criteria
- √ Biggest roofed e-bus depot in Europe
- √ Green facade
- ✓ Reduction of greenhouse gas (GHG) emissions: minimizing the affections to the neighborhood
- ✓ Use of renewable energy sources: photovoltaic panels
 in the ceiling that generate 2MW
- ✓ Photocatalytic roof (decontaminating NOx effect 30,000 m2)

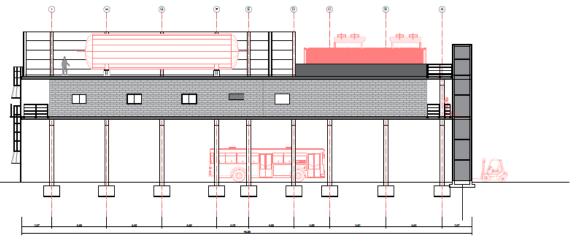
NEW ELECTRIC LA ELIPA BUS DEPOT



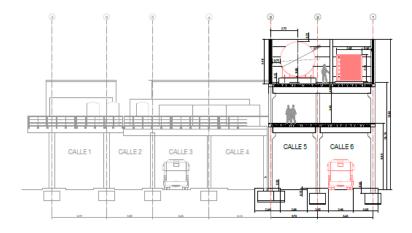
NEW ELECTRIC DEPOT LA ELIPA

 Video of the works in la Elipa Depot: https://youtu.be/o3fWF5xlAdw

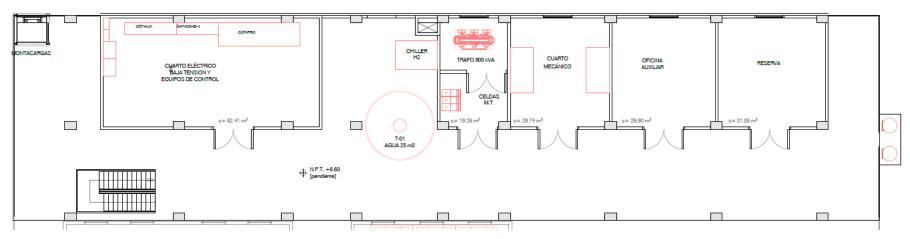
Depot adaptations: Entrevías

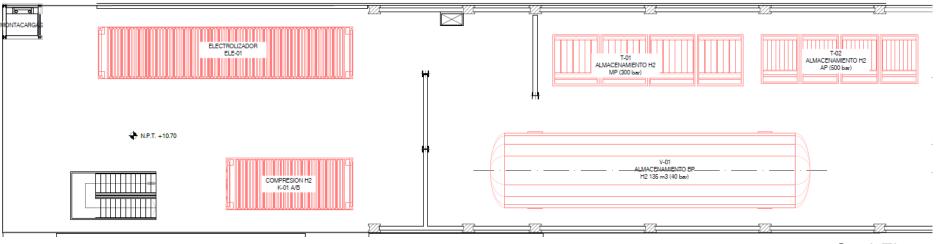


ENTREVÍAS BUS DEPOT: Green Hydrogen

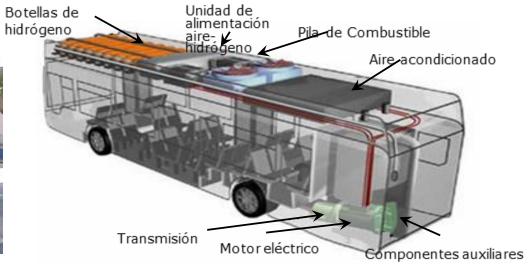


Hydrogen station



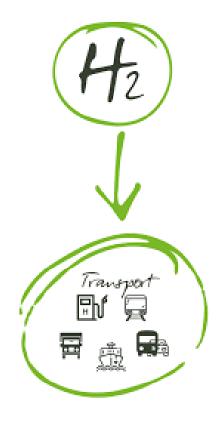

- ✓ Hydrogen station for 10 buses in the Entrevías Depot
- ✓ Photovoltaic panels on roofs for the production of 2 Mwh
- ✓ Hydrogen production equipment by electrolysis with the capacity to produce up to 18 kg of H2/h (73 ton H2/year)
- ✓ Maximum storage system of 1,013 kg of H2
- ✓ Date for operation: December/2023
- ✓ Total investment €17.2 million (including buses)

1st Floor

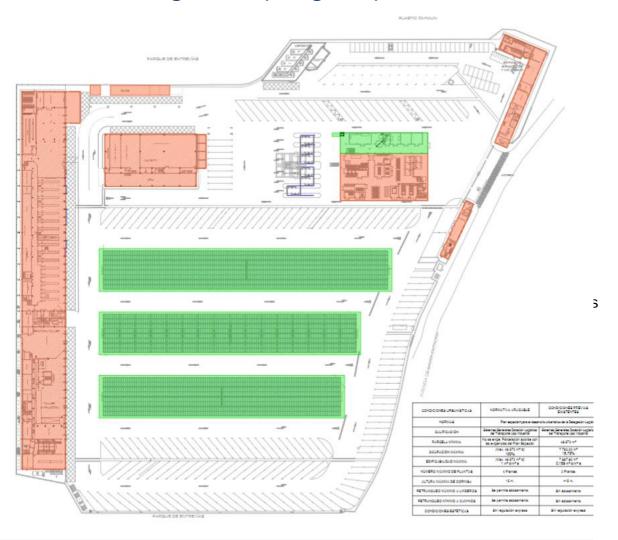


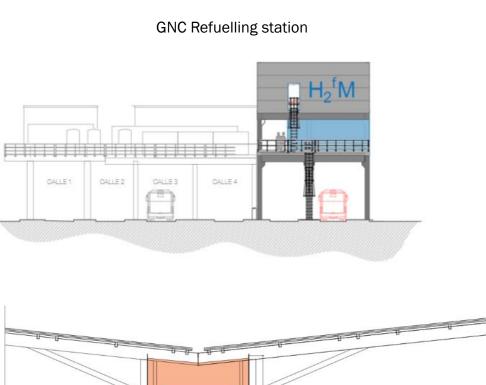
2nd Floor

BACKGROUND: CUTE and CITYCELL projects


CONTROL DE POTENCIA BOMBONAS DE HIDRÓGENO INTERCAMBIADOR DE CALOR CARGADOR DE BATERÍAS MOTOR ELÉCTRICO BATERÍA GENERADOR FUEL CELL

USE of H₂ IN TRANSPORT: Fuel cell bus, some figures


- 1. In a hydrogen fuel cell bus, there are also batteries (or capacitors). The fuel cell and the batteries or capacitors provide energy for the operation of the vehicle.
- 2. The efficiency of the fuel cell is up to 65%.
- 3. The fuel cell has an estimated lifetime of 7 years.
- 4. The range is similar to that of an internal combustion bus.
- 5. Filling the hydrogen tanks of the bus takes 10 minutes.
- 6. Pressure is **350 bar, 75% more** than CNG compressors.
- 7. Batteries or capacitors supplement the power of the battery when needed and provide a place to store the **energy** recovered from braking.



ENTREVÍAS BUS DEPOT: Green Hydrogen

Integrated Hydrogen Cycle at Entrevías Bus Depot 2021-2023

FUEL CELL BUSES: PROS & CONS

Advantages

- Zero emissions for urban traffic with green hydrogen
- Hydrogen fuel cell buses can replace a conventional vehicle:
 - Fast charging process: comparable to refuelling times of diesel vehicles (approx. 10 minutes)
 - High operational range: 300 400 km or more.
 - No loss of passenger capacity
- Energy recovery during deceleration and braking.
- "Low energy cost if the hydrogen comes from a chemical process"

FUEL CELL BUSES: PROS AND CONS

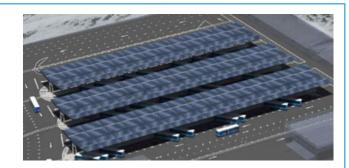
Disadvantages

- Environmental
 - Production from fossil fuels, producing CO, CO2 and other GHG
 - Production by electrolysis. Hydrogen is green only if using renewable energy sources
- High investment
 - Vehicles 30% more expensive than conventional battery electric ones
 - High cost of fuel cells, with a shorter lifetime than the vehicle
 - High cost of on-board storage systems: 350 bar cylinders for hydrogen storage, with very high containment requirements
- High maintenance costs: Need to adapt workshops and refueling area to meet hydrogen requirements
- Low efficiency of hydrogen as an energy carrier:
 - Water electrolysis: 75% efficiency
 - Compression and storage: 90% efficiency
 - Electrolysis of the battery: 50% efficiency

EMT H₂ PROJECT

"Integral project for the implementation of hydrogen buses on regular urban public transport bus lines in the city of Madrid"

- > EMT's commitment
- ➤ Project aligned with the 'Green Deal', launched by the European Commission for Clean Hydrogen.
- ➤ Positioning of EMT as a national and international benchmark in the use of H2 in public transport.
- The project covers the **entire cycle**: from the **generation of electricity** through **renewable** energies for the production of **green hydrogen**, to the **refueling** of the same in Fuel Cell buses at an EMT Operations Centre (C.O. Entrevías).
- Project developed entirely in EMT facilities.
- Project draft in 2020. EMT agreement (oct 2020) with the National Hydrogen Centre (CNH2): Expert advice and technical assistance



EMT H₂ PROJECT: SIZING

1.- Energy supply

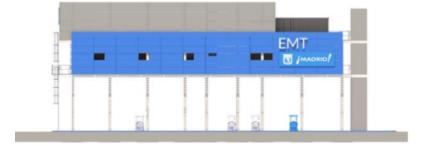
Photovoltaic pannels on parking track to obtain Green Hydrogen→ Around 2 MW energy production

3.- H₂ buses

Purchase an addition of 10 H2 buses in the EMT fleet

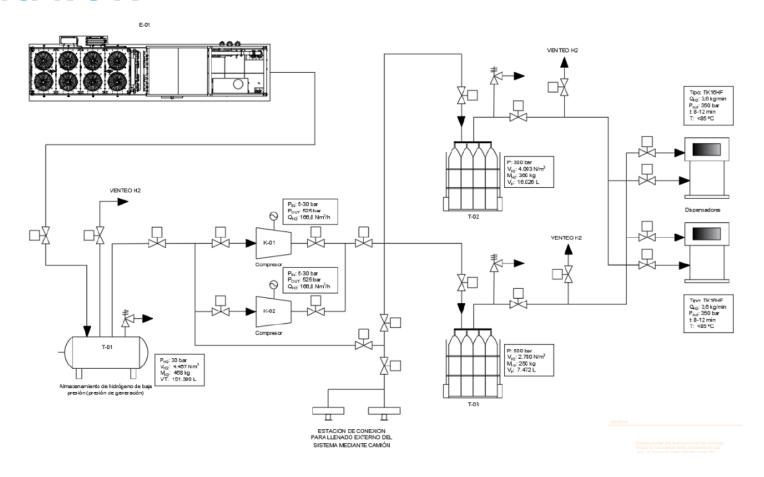
2.- H₂ production

H2 production station, with more than 400 kg H₂/day



Storage system with a máximum capacity of around 550 kg of H2 (3 tanks at 40, 300 and 500 bar)

2 Compressors up to 500 bar



H2 Fueling station: 2 dispensers at 350 bar.

Solution

Building works will start shortly

NEW ELECTRIC DEPOT ENTREVIAS

Watch out the video Entrevias Depot:

• https://youtu.be/B5Kx-AGK3KE

New depot: Las Tablas

Ounta del Duque del Arco

Fuencarral Bus Depot

Carabanchel Bus Depot

Las Tablas Bus Depot

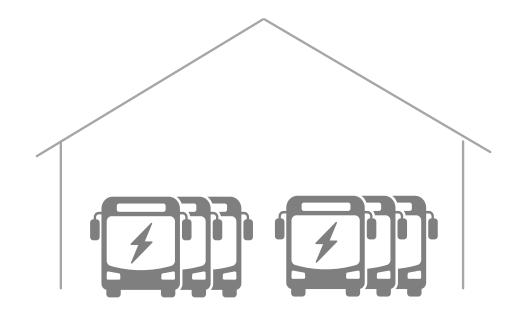
Sanchinarro Bus Depot

La Elipa Bus Depot

Entrevías Bus Depot

Las Tablas New bus depot

- ✓ Design of a 9,200 m2 Depot with a "H" shaped building
- √ 100% low emission fleet (electric and CNG)
- √ 663 buses parking area (660 std and 63 articulated)
- ✓ E-charging system by inverted pantograph and photovoltaic cover
- ✓ The use of photocatalytic materials for the roof of the garage building, to reduce greenhouse gas emissions
- √ €150 million investment



Las Tablas New bus depot

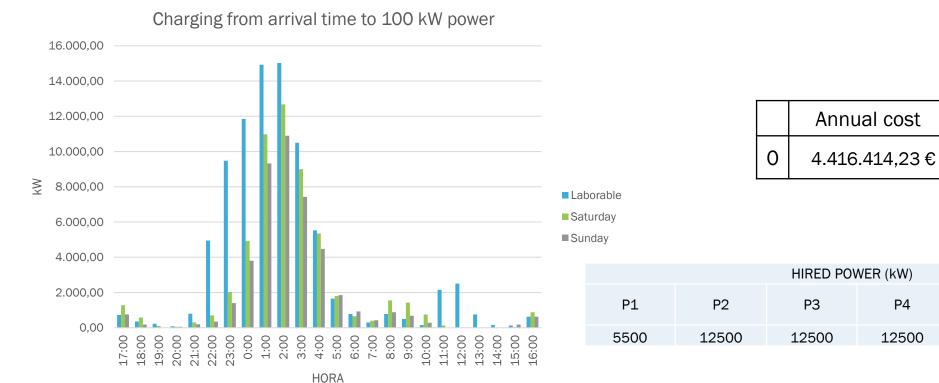
CURRENT DEPOTS ADAPTATIONS

CHALLENGES

- ✓ Coexistence of different technologies (GNC, battery electric...) and suppliers (batteries, chargers...)
- ✓ Training EMT workforce in battery electric propulsion
- ✓ Guarantee grid supply
- ✓ Workshop adaptations

III. PLANNING

• III.III. SMART CHARGING


ESTIMATING ENERGY NEEDS: OPERATIONAL ANALYSIS

Linea		Orden	Salida 🔻	Turno	Encierro 🔻	Horas en Servicio	Horas en	km totales 2 turnos	P.consumida (1,5kWh/kr	T.recarga horas (150kWh)▼	H. INICIO CARGA	HORA FIN CARGA (04:00)	HORAS CARGA
77	5	1	5:39	5	10:40	5:01	3:14	140,784	91,79	0,6119	10:45	13:45	3:00
77	5	2	13:54		20:37	6:43	9:03	140,784	119,39	0,79594	21:00	4:00	7:00
77	6	1	5:51	6	22:03	16:12	7:48		312,63	2,08422	22:30	4:00	5:30
77	7	1	6:01	7	20:27	14:26	9:34		284,61	1,89737	20:30	5:00	8:30
77	8	1	6:11	8	20:38	14:27	9:33		281,46	1,87641	21:00	5:00	8:00
77	9	1	6:15	9	23:27	17:12	6:48		339,82	2,26545	23:30	5:00	5:30
77	10	1	6:29	10	21:06	14:37	9:23		284,61	1,89737	21:30	5:00	7:30
77	11	1	6:38	11	0:42	18:04	5:56		367,42	2,44949	1:00	5:00	4:00
77	12	1	6:45	12	0:54	18:09	5:51		364,28	2,42853	1:00	5:00	4:00

ESTIMATING ENERGY NEEDS: OPERATIONAL ANALYSIS. WITHOUT SMART CHARGING

Annual power consumed (kWh)								
Fare periods	P1	P2	P3	P4	P5	P6	TOTAL	
Energy charging	833.291,67	2.255.569,44	1.399.980,56	1.803.991,67	1.426.883,33	17.595.625,0 0	25.315.341,6 7	
Energy C.O.	115.840,00	141.279,00	126.250,00	144.377,00	56.604,00	687.984,00	1.272.334,00	
Energy Photovoltaic	69.442,73	85.108,65	75.348,08	85.834,65	32.953,80	119.847,75	468.535,65	
Total Energy	879.688,94	2.311.739,79	1.450.882,48	1.862.534,02	1.450.533,53	18.163.761,2 5	26.119.140,0 2	

P6

15500

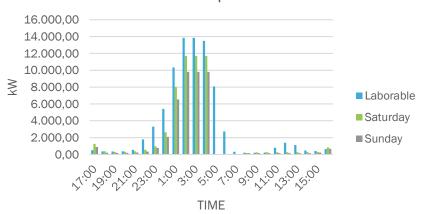
P4

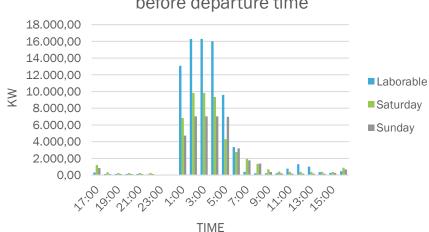
12500

P5

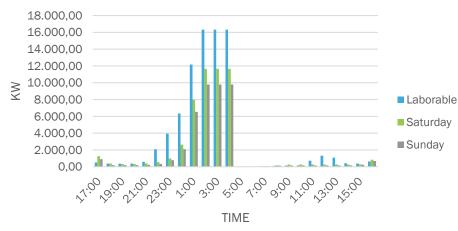
12500

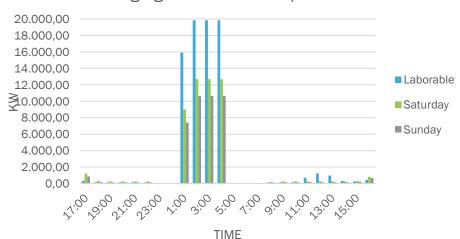
ESTIMATING ENERGY NEEDS




ESTIMATING ENERGY NEEDS:

OPERATIONAL ANALYSIS. WITH SMART CHARGING


1.- Charging from arrival time up to one hour before departure time


3.- Charging from 0:00 AM up to one hour before departure time

2.- Charging from arrival up to 04:00 AM

4.- Charging from 0:00 AM up to 04:00 AM

	Annual Cost				
0	4.416.414,23 €				
1	3.902.771,75 €				
2	3.944.895,72 €				
3	3.711.294,89 €				
4	3.711.945,81 €				

ESTIMATING ENERGY NEEDS: OPERATIONAL ANALYSIS. WITH SMART CHARGING

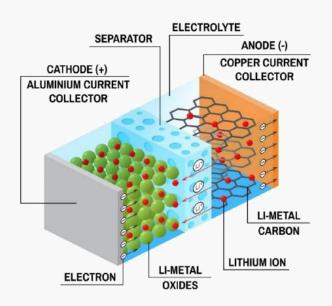
		ANUAL COST	POWER NEEDS (KW)	BATTERIES LIFE	DISPONIBILIT Y
0	Without Smart Charging	4.416.414,23 €	17.000	LOW	VERY HIGH
1	Arrival - Departure	3.902.771,75 €	14.500	VERY HIGH	HIGH
2	Arrival – 04:00 AM	3.944.895,72 €	17.000	MEDIUM	LOW
3	0:00 AM - Departure	3.711.294,89 €	17.000	MEDIUM	MEDIUM
4	0:00 AM - 04:00 AM	3.711.945,81 €	20.500	LOW	LOW

SELECTING CHARGING TECHNOLOGY STUDY OF ALTERNATIVES

	Cable	Inducción		Conducción	
Requerimientos		Estático	Dinámico	Pantógrafo tradicional	Pantógrafo invertido
Permita desvincular la compra del autobús de la infraestructura de carga.	×	×	×	✓	✓
Sea un sistema de "cargador universal" que permita a cada autobús aparcar en cualquier plaza de aparcamiento independientemente de la marca.	×	✓	 ✓	✓	✓
Permita la carga a diferentes niveles de potencia.	\checkmark	✓	✓	✓	✓
Sea apto para la carga en depósito.	✓	✓	×	✓	✓
Sea automático, de modo que no requiera una conexión manual.	×	✓	✓	✓	✓
Permita un "sistema inteligente de gestión de la carga" para optimizar la potencia consumida y minimizar los "picos" de potencia.	☑	✓	✓	✓	✓

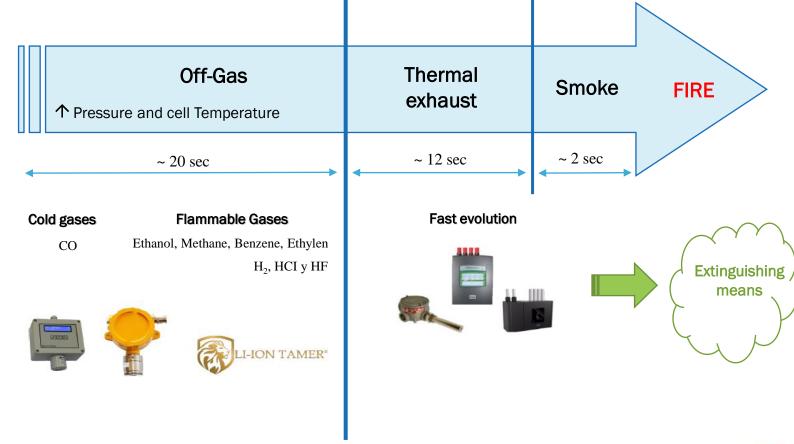
SELECTING CHARGING TECHNOLOGY STUDY OF ALTERNATIVES

- Conductive charging is, according to the study, the best option for big fleet os public e-buses
- Thanks to the maturity of the market, and a growing catalogue of solutions, inverted pantographs (panto-down) have more advantages tan the traditional panto (panto-up)
- Inverted pantographs are also the best suited for EMT needs and requirements
- Preinstalation of the compatible racks with inverted pantographs on the ceiling of e-buses is an advantage for the adoption of this technology and the homogeneization of EMT fleet



III. PLANNING

• III.IV. SAFETY REGULATIONS AND STANDARDS



RISKS OF ION-LITHIUM BATTERIES

- Pressure and cell temperature
- Electrolyte decomposition
- Electrochemical reaction and release of flammable gases

FIRE EXTINGUISHING MEANS

MALOS AGENTES:

- Polvo
- Espuma
- Agua

Sistemas de Extinción por inundación:

Fase "Thermal runaway"

- Gases Inertes / Novec 1230 (15,2%)
- Aerosoles

HEAT ABSORPTION	WATER:	F500 (1%):	F500 (3%):	
	6,624,702 KCAL/HOUR	21,164,604 KCAL/HOUR	65,493,812 KCAL/HOUR	

Sistemas de Encapsulado:

Solución acuosa / F-500

Temperature reduction: 600°C in few seconds

■ What is F-500?

- Is a water based additive (fresh salted)
- Classified as multi-purpose suppression agent (UL)
- Flammable liquid spill control agent
- Bioremediation facilitator (EPA)

Fire suppression

- Reduction of surface tension
- Reduction of heat quick and permanent: Powerful cooling and increased penetrating effect
- Reduction of toxic gases:

Encapsulating agent that can envelop/contain flammable fuels and gases, thereby inhibiting their oxidising effect and reducing the impact of toxic gases

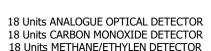
IMPLEMENTATION CHARGING INFRASTRUCTURE IN CARABANCHEL (BEB)

As outdoor canopies, regulation indicates that prescriptive protection is based on hydrants, fire extinguishers and alarm buttons.

As <u>additional safety measures</u> to protect infrastructure and rolling stock:

- Automatic fire extinguishers by sprinklers and encapsulating additive F500
- Flammable and toxic gases detection systems
- Detection system and fire alarms by specific detectors and infrared thermal cameras
- Portable fire extinguishers (extinguishers with minimum regulatory efficiencies and trolley extinguishers with F500 additive tested for lithium battery fires)

Criterio	Riesgo	Caudal Rociadores nominal (Ipm)	Aditivo F-500 (3%)	Reserva de F-500 a 30 min	Depóstito atmosférico	Dosificador FIre-DOS
UNE 12845 y Bomberos -Barcelona (*)	ROII	972	30	900	1000	1000


It has been decided to design it according to the standard UNE 12845 adapted to the protection against fire supply in the infrastructure

BUS CANOPY: Surface = 2,650 m2

1 Unit
ATMOSPFHERIC FOAM
CONCENTRATE TANK
1.000 LITRES
With additive F-500 3%

6 Units HEATPRO THERMAL CAMERAS With bi-spectral lens optical/thermic for the control of the battery and bus pantograph

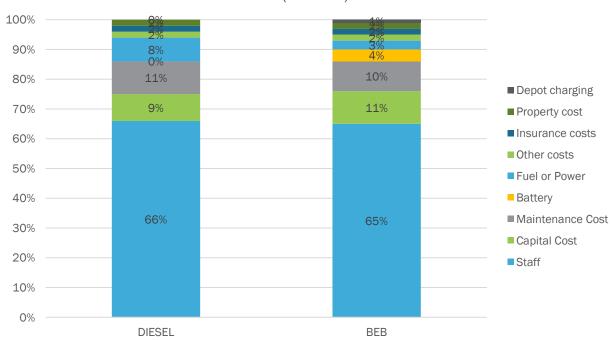
- 6 Units EXTINGUISHER 5kg CO₂
- 6 Units EXTINGUISHER 6kg powder
- 8 Units EXTINGUISHER TROLLEY 50L WATER WITH ADDITIVE F-500

320 Units
AUTOMATIC SPRINKLERS ½" K=80
(Homologated FM/UL), TARED 93°
(bulb) HANGING. QR

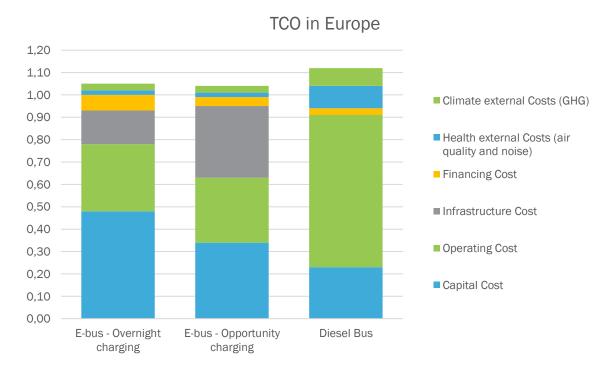
Safety procedures for employees when interacting with charging infrastructure

1 - Preparation

- Remove metallic elements
- Prepare the necessary PPE (personal protection equipment) and check it
- Check measuring elements (they are the right ones and they work)
- 2 Signpost and protect
 - Warning signs
 - Delimitation of work area
 - Disconnection of high voltage. Removal of fuses or relays.
 - Measurement of absence of voltage
- 3 Use of PPE and suitable tools.
- 4 Powering up by reverse process.

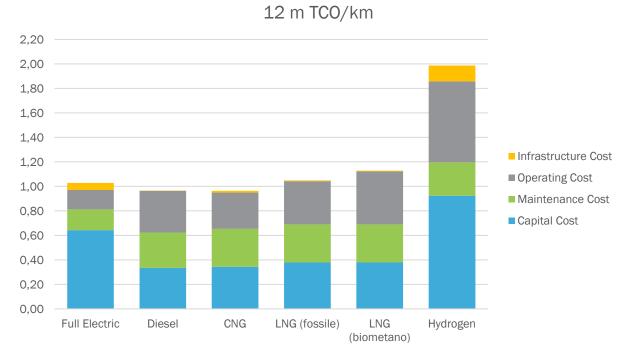


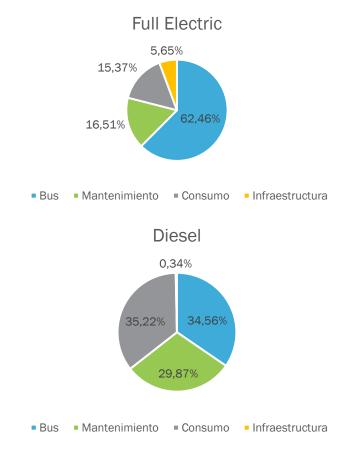
IV. TOTAL COST OPERATION



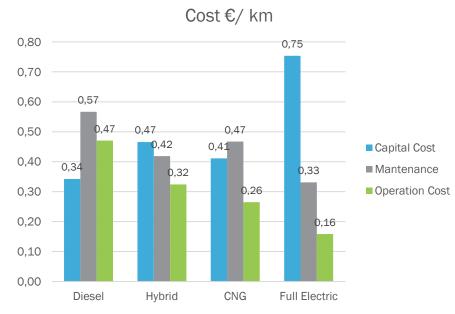
TOTAL COST OPERATION: EXAMPLES

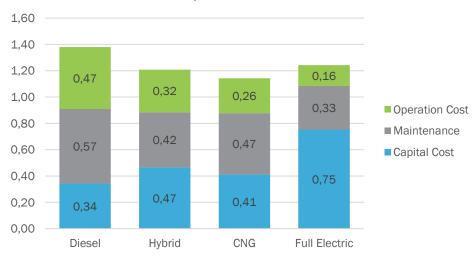
TCO EURO VI (DIESEL) AND E-BUS

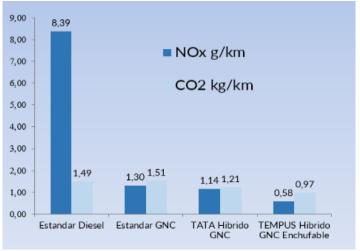

Comparation of TCO between Euro VI diesel and e-bus (UK assumptions). Source: Going electric. A Path to Zero Emission Buses (European Bank for Reconstruction and Development Policy Paper) and TIL analysis for the EBRD.


8-year TCO calculation, daily distance traveled of 250 km, excluding driver costs, in 2018, in Europe (€/km). Source: Transport and Environment (2018)

TOTAL COST OPERATION: EXAMPLES


TCO by typology - 12m, year 2021, Italy. Source: GREEN elaboration


TCO by typology, percentage distribution 12m, year 2021, Italy. Source: GREEN elaboration



TCOP IN EMT MADRID

Cost €/ km accumulated

V. EMT CONCLUSIONS

Electrification is the best solution for Sustainable Public Transport

In the long term, EMT is committed to the use of Electric Bus

- ✓ Choice Optimal charging model. Overnight charging by inverted pantograph.
- ✓ Design and Adaptation of the Depots to guarantee the availability of energy.
- ✓ Electrification according to the characteristics of the network. Electrical infrastructures are 5-10% (approx.) of the investment in rolling stock (not counting the operating cost and energy cost)
- ✓ The recharging of buses must be guaranteed efficiently and reliably: The improvement of the efficiency in the management of the intelligent recharge allows an optimization in the investment of the infrastructure and in the consumption
- ✓ Public-private collaboration: Operator, Administration and electricity companies
- ✓ Importance in terms of the training of maintenance staff. Need for specific standards and certifications
- ✓ **Development of security plans** and importance of **fire protection** systems. Needs assessment and policy development

EMT CONCLUSIONS

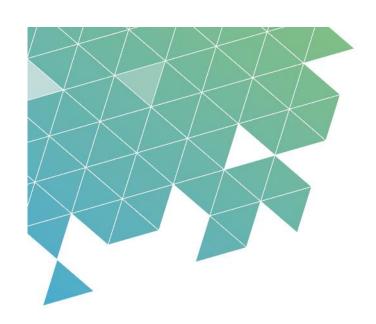
- ✓ The energy transition is not just buying a bus: a change in the operation system is necessary (infrastructures, processes, contracts, etc.)
- ✓ Transitions are long:
 - ✓ 1994 to 2022 Transition Diesel to CNG at 100%!
 - ✓ 2007 to 2035 Transition CNG to Electric. Today at 8%: 2027 at 34%
- ✓ Electrical infrastructures are 5-10% (approx.) of the investment in rolling stock (not counting the operating cost and energy cost)

EMT CONCLUSIONS

Future of urban transport will be:

- Intelligent
- Autonomous
- Integrated
- Electric

✓ AND... IT WILL BE BY BUS!



Thank You!

Any questions?

UPCOMING WEBINAR: Battery focus: safety, 2nd life, recycling

9th Feb 2023, 11.00-12.00 CET You can register <u>here</u>

Prof. Maitane Berecibar

Full Professor at VUB & Head of the Battery Innovation Center, MOBI-VUB

